Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences∗
نویسنده
چکیده
We use the Robinson-Schensted-Knuth correspondence and Schützenberger’s evacuation of standard tableaux to enumerate permutations and involutions which are invariant under the reverse-complement map and which have no decreasing subsequences of length k. These enumerations are in terms of numbers of permutations with no decreasing subsequences of length approximately k2 ; we use known results concerning these quantities to give explicit formulas when k ≤ 6.
منابع مشابه
Increasing Subsequences in Nonuniform Random Permutations
Connections between longest increasing subsequences in random permutations and eigenvalues of random matrices with complex entries have been intensely studied. This note applies properties of random elements of the finite general linear group to obtain results about the longest increasing and decreasing subsequences in non-uniform random permutations.
متن کاملPosets of Matrices and Permutations with Forbidden Subsequences
The enumeration of permutations with specific forbidden subsequences has applications in areas ranging from algebraic geometry to the study of sorting algorithms. We consider a ranked poset of permutation matrices whose global structure incorporates the solution to the equivalent problem of enumerating permutations which contain a required subsequence. We describe this structure completely for ...
متن کاملYoung classes of permutations
We characterise those classes of permutations closed under taking subsequences and reindexing that also have the property that for every tableau shape either every permutation of that shape or no permutation of that shape belongs to the class. The characterisation is in terms of the dominance order for partitions (and their conjugates) and shows that for any such class there is a constant k suc...
متن کاملIncreasing and Decreasing Subsequences and Their Variants
We survey the theory of increasing and decreasing subsequences of permutations. Enumeration problems in this area are closely related to the RSK algorithm. The asymptotic behavior of the expected value of the length is(w) of the longest increasing subsequence of a permutation w of 1, 2, . . . , n was obtained by Vershik-Kerov and (almost) by Logan-Shepp. The entire limiting distribution of is(w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009